From Monte Carlo to Las Vegas: Improving Restricted Boltzmann Machine Training Through Stopping Sets

نویسندگان

  • Pedro H. P. Savarese
  • Mayank Kakodkar
  • Bruno Ribeiro
چکیده

We propose a Las Vegas transformation of Markov Chain Monte Carlo (MCMC) estimators of Restricted Boltzmann Machines (RBMs). We denote our approach Markov Chain Las Vegas (MCLV). MCLV gives statistical guarantees in exchange for random running times. MCLV uses a stopping set built from the training data and has maximum number of Markov chain steps K (referred as MCLV-K). We present a MCLV-K gradient estimator (LVS-K) for RBMs and explore the correspondence and differences between LVS-K and Contrastive Divergence (CD-K), with LVS-K significantly outperforming CD-K training RBMs over the MNIST dataset, indicating MCLV to be a promising direction in learning generative models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Convergence of Restricted Boltzmann Machine Learning

Restricted Boltzmann Machines are increasingly popular tools for unsupervised learning. They are very general, can cope with missing data and are used to pretrain deep learning machines. RBMs learn a generative model of the data distribution. As exact gradient ascent on the data likelihood is infeasible, typically Markov Chain Monte Carlo approximations to the gradient such as Contrastive Diver...

متن کامل

On the Monte Carlo Boolean Decision Tree Complexity of Read-Once Formulae

In the boolean decision tree model there is at least a linear gap between the Monte Carlo and the Las Vegas complexity of a function depending on the error probability. We prove for a large class of read-once formulae that this trivial speed-up is the best what a Monte Carlo algorithm can achieve. For every formula F belonging to that class we show that the Monte Carlo complexity of F with two ...

متن کامل

On the Power of Las Vegas for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations

The study of the computational power of randomized computations is one of the central tasks of complexity theory. The main goal of this paper is the comparison of the power of Las Vegas computation and deterministic respectively nondeterministic computation. We investigate the power of Las Vegas computation for the complexity measures of one-way communication, nite automata and polynomial-time ...

متن کامل

Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machines

Alternating Gibbs sampling is the most common scheme used for sampling from Restricted Boltzmann Machines (RBM), a crucial component in deep architectures such as Deep Belief Networks. However, we find that it often does a very poor job of rendering the diversity of modes captured by the trained model. We suspect that this hinders the advantage that could in principle be brought by training alg...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.08442  شماره 

صفحات  -

تاریخ انتشار 2017